<u>17PS1207 - AI TECHNIQUES IN POWER SYSTEMS</u>

Instruction/week: 4 hrs. Univ. Exam: 3 hrs. Max. Sessional marks: 40 Univ. Exam marks: 60

<u>UNIT-I</u>

INTORDUCTION TO NEURAL NETWORKS: Introduction, Humans and computers, organization of brain, Biological neuron, Biological and artificial neuron models-Introduction, neural network models, architectures, knowledge presentation, learning process, learning tasks.

<u>UNIT-II</u>

FEED FORWARD NEURAL NETWORKS: Introduction, perceptron models, Discrete and continuous perceptron networks, perceptron convergence thorem, limitation of perceptron model, applications.

ANN PARADIGM: Back propagation, RBF algorithms, Hope field networks.

UNIT-III

GENETIC ALGORITHMS: Introduction, encoding, fitness function, reproduction operators. **GENETIC MODELING:** Genetic operators- crossover and mutation, generational cycle, convergence of genetic algorithm.

UNIT-IV

CLASSICAL AND FUZZY SETS: Introduction to classical sets, properties, operations and relations; Fuzzy sets, membership, uncertainty, properties, fuzzy relations, cardinalities, membership functions.

<u>UNIT-V</u>

FUZZY LOGIC SYSTEM COMPONENTS: Fuzzification, membership value assignment, development of rule base and decision making system, defuzzification to crisp sets, defuzzification methods.

APPLICATION OF AI TECHNIQUES: Load frequency control, speed control of dc and ac motors

TEXT BOOKS:

- 1. "Neural networks, Fuzzy logic, Genetic algorithms: synthesis and application" by Rajasekharan and Rai, PHI publication
- 2. "Introduction to Artificial Neural systems" by Jacek M.Zuarda, Jaico publishing house.

REFERENCES:

- 1. "Fuzzy Control" by Kevin M. Passino, Stephen Yurkovich, Addison-Wesley(1998)
- 2. "Fuzzy Logic with Engineering Applications" by Thimothy J Ross, Mc-Graw Hill New york (1997)